八年級數(shù)學(xué)教案全冊(實用19篇)

格式:DOC 上傳日期:2023-11-10 02:21:21
八年級數(shù)學(xué)教案全冊(實用19篇)
時間:2023-11-10 02:21:21     小編:紫衣夢

教案是教師對教學(xué)過程的組織和管理,以及學(xué)生學(xué)習(xí)活動的指導(dǎo)和支持的一種手段。講究教案的設(shè)計可有助于提高教學(xué)效果和學(xué)生的學(xué)習(xí)質(zhì)量。通過研究不同教案的編寫方法和技巧,可以提高教師的教學(xué)設(shè)計能力。

八年級數(shù)學(xué)教案全冊篇一

教學(xué)。

目標(biāo)(含重點、難點)及。

設(shè)置依據(jù)教學(xué)目標(biāo)。

1、了解多面體、直棱柱的有關(guān)概念.2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。

3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。

教學(xué)重點與難點。

教學(xué)過程。

內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。

一、創(chuàng)設(shè)情景,引入新課。

析:學(xué)生很容易回答出更多的答案。

師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

二、合作交流,探求新知。

1.多面體、棱、頂點概念:

2.合作交流。

師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。

述其特征。)。

師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

學(xué)生活動:分小組討論。

說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

師:請大家找出與長方體,立方體類似的物體或模型。

析:舉出實例。(找出區(qū)別)。

師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長方形含正方形。

長方體和正方體都是直四棱柱。

3.反饋鞏固。

完成“做一做”

析:由第(3)小題可以得到:

直棱柱的相鄰兩條側(cè)棱互相平行且相等。

4.學(xué)以至用。

出示例題。(先請學(xué)生單獨考慮,再作講解)。

析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。

最后完成例題中的“想一想”

5.鞏固練習(xí)(學(xué)生練習(xí))。

完成“課內(nèi)練習(xí)”

三、小結(jié)回顧,反思提高。

師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

合作交流后得到:重點直棱柱的有關(guān)概念。

直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長方形含正方形。

例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點比較難。

板書設(shè)計。

作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。

八年級數(shù)學(xué)教案全冊篇二

一、教材分析:

《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

(一)知識目標(biāo):

1、要求學(xué)生掌握正方形的概念及性質(zhì);

2、能正確運用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;

(二)能力目標(biāo):

1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;

2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;

(三)情感目標(biāo):

1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);

2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;

3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

二、學(xué)生分析:

該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

三、教法分析:

針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。

通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

四、學(xué)法分析:

本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。

五、教學(xué)程序:

第一環(huán)節(jié):相關(guān)知識回顧。

以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

2、正方形的性質(zhì)。

定理1:正方形的四個角都是直角,四條邊都相等;

定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。

5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達(dá)到理想中的完美。

6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。

八年級數(shù)學(xué)教案全冊篇三

1.理解分式的基本性質(zhì).

2.會用分式的基本性質(zhì)將分式變形.

二、重點、難點。

1.重點:理解分式的基本性質(zhì).

2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.

3.認(rèn)知難點與突破方法。

教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

三、例、習(xí)題的意圖分析。

1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.p9的例3、例4地目的是進(jìn)一步運用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

四、課堂引入。

1.請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).

五、例題講解。

p7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

p11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.

p11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習(xí)。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.約分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

七、課后練習(xí)。

1.判斷下列約分是否正確:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年級數(shù)學(xué)教案全冊篇四

在推理判斷中得出同底數(shù)冪乘法的運算法則,并掌握“法則”的應(yīng)用.2.過程與方法。

在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強學(xué)習(xí)信心.重、難點與關(guān)鍵。

1.重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.2.難點:同底數(shù)冪的乘法的法則的應(yīng)用.

一、創(chuàng)設(shè)情境,故事引入【情境導(dǎo)入】。

力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.

八年級數(shù)學(xué)教案全冊篇五

教學(xué)目標(biāo):

〔知識與技能〕。

1.在生活實例中認(rèn)識軸對稱圖.

2.分析軸對稱圖形,理解軸對稱的概念.軸對稱圖形的概念。

〔過程與方法〕。

2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。

〔情感、態(tài)度與價值觀〕。

辯證唯物主義觀點。

教學(xué)重點:.

理解軸對稱的概念。

教學(xué)難點。

能夠識別軸對稱圖形并找出它的對稱軸.

教具準(zhǔn)備:三角尺。

教學(xué)過程。

一.創(chuàng)設(shè)情境,引入新課。

1.舉實例說明對稱的重要性和生活充滿著對稱。

2.對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧.

3.軸對稱是對稱中重要的一種,讓我們一起走進(jìn)軸對稱世界,探索它的秘密吧!

二.導(dǎo)入新課。

1.觀察:幾幅圖片(出示圖片),觀察它們都有些什么共同特征.

強調(diào):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,?甚至日常生活用品,人們都可以找到對稱的例子.

練習(xí):從學(xué)生生活周圍的事物中來找一些具有對稱特征的例子.

3.如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.我們也說這個圖形關(guān)于這條直線(成軸)?對稱.

4.動手操作:取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意。

刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?

歸納小結(jié):由此我們進(jìn)一步了解了軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

5.練習(xí):你能找出它們的對稱軸嗎?分小組討論.

思考:大家想一想,你發(fā)現(xiàn)了什么?

小結(jié)得出:.像這樣,?把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,?這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點.

三.隨堂練習(xí)。

1、課本60練習(xí)1、2。

四.課時小結(jié)。

分了軸對稱圖形和兩個圖形成軸對稱.

五.課后作業(yè)。

習(xí)題13.1.1、2、6題.

六.教后記。

八年級數(shù)學(xué)教案全冊篇六

一、教學(xué)目的:

1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系;

3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;

4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想;

二、重點、難點。

1、教學(xué)重點:菱形的性質(zhì)1、2;

2、教學(xué)難點:菱形的性質(zhì)及菱形知識的綜合應(yīng)用;

三、例題的意圖分析。

四、課堂引入。

1、(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?

《18、2、2菱形》課時練習(xí)含答案;

5、在同一平面內(nèi),用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。

a、矩形b、菱形c、正方形d、梯形。

答案:b。

知識點:等邊三角形的性質(zhì);菱形的判定。

解析:

分析:此題主要考查了等邊三角形的性質(zhì),菱形的定義、

6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。

a、等腰梯形b、正方形c、矩形d、菱形。

答案:d。

知識點:等邊三角形的性質(zhì);菱形的判定。

解析:

分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、

《菱形的性質(zhì)與判定》練習(xí)題。

一選擇題:

1、下列四邊形中不一定為菱形的是()。

a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。

c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。

2、下列說法中正確的是()。

a、四邊相等的四邊形是菱形。

b、一組對邊相等,另一組對邊平行的四邊形是菱形。

c、對角線互相垂直的四邊形是菱形。

d、對角線互相平分的四邊形是菱形。

3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。

a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。

八年級數(shù)學(xué)教案全冊篇七

(一)、知識與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。

(二)、過程與方法:

(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

(三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。

二、教學(xué)重點和難點。

重點:因式分解的概念及提公因式法。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過程。

教學(xué)環(huán)節(jié):

活動1:復(fù)習(xí)引入。

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設(shè)計意圖:

注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

活動2:導(dǎo)入課題。

p165的探究(略);

2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

設(shè)計意圖:

引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動3:探究新知。

看誰算得準(zhǔn):

計算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動4:歸納、得出新知。

比較以下兩種運算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學(xué)教案全冊篇八

多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。

二、自主學(xué)習(xí),指向目標(biāo)。

學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分。

三、合作探究,達(dá)成目標(biāo)。

多邊形的定義及有關(guān)概念。

活動一:閱讀教材p19。

小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

反思小結(jié):多邊形的定義及相關(guān)概念。

針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。

多邊形的對角線。

活動二:(1)十邊形的對角線有35條。

(2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

反思小結(jié):當(dāng)n為已知時,可以直接代入求得對角線的條數(shù),當(dāng)對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。

正多邊形的有關(guān)概念。

活動二:閱讀教材p20。

小組討論:判斷一個多邊形是否是正多邊形的條件?

反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。

四、總結(jié)梳理,內(nèi)化目標(biāo)。

本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:

1、多邊形、多邊形的外角,多邊形的對角線。

2、凸凹多邊形的概念。

五、達(dá)標(biāo)檢測,反思目標(biāo)。

1、下列敘述正確的是(d)。

a、每條邊都相等的多邊形是正多邊形。

c、每個角都相等的多邊形叫正多邊形。

d、每條邊、每個角都相等的多邊形叫正多邊形。

2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(d)。

a、三角形b。正方形c。四邊形d。梯形。

3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。

4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

八年級數(shù)學(xué)教案全冊篇九

1.1知識與技能:

使學(xué)生學(xué)會計算長方體和正方體的體積,并能利用公式正確進(jìn)行計算。

1.2過程與方法:

在公式的推導(dǎo)過程中培養(yǎng)學(xué)生的觀察能力、空間想象能力、提出問題的意識及解決實際問題的能力。

1.3情感態(tài)度與價值觀:

使學(xué)生體會數(shù)學(xué)來源于生活,且服務(wù)于生活,產(chǎn)生熱愛數(shù)學(xué)的思想感情。

教學(xué)重難點。

2.1教學(xué)重點:

2掌握長、正方體體積的計算方法,解決實際問題。

2.2教學(xué)難點:

長、正方體體積公式的推導(dǎo)過程。

教學(xué)工具。

教學(xué)過程。

一、復(fù)習(xí)引入。

1、下列長方體的長、寬、高各是多少:

長:8厘米長:6分米長:8厘米長:12米。

寬:4厘米寬:2.5分米寬:4厘米寬:10米。

高:5厘米高:10分米高:4厘米高:1.5米。

2、下列圖形是用1立方厘米的正方體搭成的。它們的體積各是多少立方厘米?

3、怎樣知道這個長方體的體積是多少呢?

今天我們就一起來學(xué)習(xí)長方體和正方體的體積。(板書:長方體和正方體的體積)。

二、新知探究。

1、長方體的體積。

(1)活動一:

師:鄭老師在每個4人小組都放了12個1平方厘米的小正方體和一張學(xué)習(xí)單,下面我們將以四人小組的形式進(jìn)行探究。首先請看活動要求(課件出示):

a、四人小組合作用12個小正方體擺形狀不同的長方體;

b、每擺出一種請在學(xué)習(xí)單上做好記錄,然后再擺下一種;

c、擺完后想想你發(fā)現(xiàn)了什么,在四人小組內(nèi)交流;

d、每組選出一位代表進(jìn)行匯報。

生小組合作動手操作。

反饋,學(xué)生匯報。

生每匯報出一種情況,師在黑板上的表格中板書:

師:觀察表格,你發(fā)現(xiàn)了什么?

引導(dǎo)學(xué)生得出:只要用每行的個數(shù)乘以行數(shù),得到一層所含的體積單位數(shù),再乘以層數(shù),就能得到這個長方體所含的體積單位數(shù)。

板書:體積=每行個數(shù)×行數(shù)×層數(shù)。

師:剛才同學(xué)們用12個小正方體擺出的長方體體積都是12平方厘米的,鄭老師剛才也擺了兩個,不過體積比你們大多了,但是要看懂鄭老師的長方體必須發(fā)揮一下你們的空間想象能力。(課件出示)。

你知道這兩個長方體的體積嗎?你是怎么知道的?(生說,師填表)。

(2)活動二:

師:四人小組合作,你們能擺出一個體積更大的長方體嗎?

預(yù)設(shè):長5厘米,寬5厘米,高4厘米。

師:你發(fā)現(xiàn)了什么?每排個數(shù)、排數(shù)、層數(shù)相當(dāng)于長方體的什么?

生:長寬高,因為每一個小正方體的棱長是1厘米,所以,每行擺幾個小正方體,長正好是幾厘米;擺幾行,寬正好是幾厘米;擺幾層,高也正好是幾厘米。

2、下面的長方體,看它包含有多少個體積單位?并指出它的長、寬、高各是多少。

(2)觀察上面?zhèn)€部分之間的關(guān)系,可以得出:

第一個:5=5×1×1。

第二個:15=5×3×1。

第三個:12=3×2×2。

通過上面的關(guān)系式,可以得出:長方體的體積=長×寬×高。

如果用字母v表示長方體的體積,用a、b、c分別表示長方體的長、寬、高,那么長方體的體積計算公式可以寫成:v=a×b×c。

根據(jù)長方體和正方體的關(guān)系,你能想出正方體的體積怎樣計算嗎?

3、正方體的體積。

因為正方體的性質(zhì),所有的棱長都相等,所以,正方體的體積=棱長×棱長×棱長。

如果用字母v表示正方體的體積,用a表示正方體的棱長,那么正方體的體積計算公式可以寫成:v=a·a·a。

a·a·a也可以寫作a?,讀作“a的立方”,表示3個a相乘。

正方體的體積計算公式一般寫成v=a3。

三、鞏固提升。

1、計算下面圖形的體積。

v=abh=7×3×3=63(cm?)。

v=a3=4×4×4=64(cm)。

2、求下列長方體的體積。

8×4×5=160(cm3)6×2.5×10=15(dm3)8×4×4=128(cm3)1.5×10×12=180(m3)。

解:v=abh。

=2.9×1×14.7。

=42.63(m?)。

答:這塊石碑的體積是42.63立方米。

4、判斷正誤并說明理由。

(1)0.23=0.2×0.2×0.2。(√)。

(2)5x3=10x。(×)。

(3)一個正方體棱長4分米,它的體積是:43=12(立方分米)。(×)。

(4)一個長方體,長5分米,寬4分米,高3厘米,它的體積是60分米。(×)。

5、一個長方體的體積是48立方分米,長8分米、寬4分米,它的高是多少分米?

48÷8÷4=1.5(分米)。

答:它的高是1.5分米。

10×8×6=480(立方厘米)。

答:它的體積是480立方厘米。

(8×6)+(8×7+6×7)×2=244(平方分米)。

8×6×7=336(立方分米)。

答:制作這個魚缸共需玻璃244平方分米。這個魚缸的體積是336立方分米。

課后小結(jié)。

這節(jié)課我們學(xué)習(xí)了什么?

我們學(xué)習(xí)了長方體和正方體體積的計算公式。

長方體的體積=長×寬×高,v=a×b×h。

正方體的體積=棱長×棱長×棱長,v=a×a×a=a3。

板書。

長方體和正方體的體積。

長方體的體積=長×寬×高。

v=a×b×h。

正方體的體積=棱長×棱長×棱長。

v=a×a×a=a3。

八年級數(shù)學(xué)教案全冊篇十

1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。

平行四邊形的判定方法及應(yīng)用。

閱讀教材p44至p45。

利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

(1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(5)你還能找出其他方法嗎?

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)。

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

八年級數(shù)學(xué)教案全冊篇十一

1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

將實際問題中的等量 關(guān)系用分式方程表示

找實際問題中的等量關(guān)系

有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關(guān)系?

如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據(jù)題意,可得方程_ _____________________。

學(xué)生分組探討、交流,列出方程.

上面所得到的方程有什么共同特點?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

本節(jié)課你學(xué)到了哪些知識?有什么感想?

八年級數(shù)學(xué)教案全冊篇十二

2、范例講解。

(學(xué)生嘗試練習(xí)后,教師講評)。

例1:解方程例2:解方程例3:解方程講評時強調(diào):

1、怎樣確定最簡公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習(xí):p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級數(shù)學(xué)教案全冊篇十三

正比例函數(shù)的概念。

2、內(nèi)容解析。

一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗。

對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。

本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。

基于以上分析,確定本節(jié)課的教學(xué)重點:正比例函數(shù)的概念。

1、目標(biāo)。

(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;

(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。

2、目標(biāo)解析。

達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。

達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實際問題抽象為函數(shù)模型,體會函數(shù)建模思想。

正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實際問題進(jìn)行分析過程中,需進(jìn)一步強化對函數(shù)概念的理解:即實際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的`每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。

因此本節(jié)課的教學(xué)難點是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程。

八年級數(shù)學(xué)教案全冊篇十四

三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系。

2.內(nèi)容解析。

本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系。

本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系。

二、目標(biāo)和目標(biāo)解析。

1.教學(xué)目標(biāo)。

(1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素。

(2)理解并且靈活應(yīng)用三角形三邊關(guān)系。

2.教學(xué)目標(biāo)解析。

(1)結(jié)合具體圖形,識三角形的概念及其基本元素。

(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進(jìn)行分類。

(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題。

三、教學(xué)問題診斷分析。

四、教學(xué)過程設(shè)計。

1.創(chuàng)設(shè)情境,提出問題。

問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義。

2.抽象概括,形成概念。

動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義。

師生活動:

三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

八年級數(shù)學(xué)教案全冊篇十五

學(xué)會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、

解分式方程的一般步驟。

1、什么叫分式方程?

2、解分式方程的基本思想:

分式方程整式方程。

3、解方程(學(xué)生板演)。

1、由上述學(xué)生的板演歸納出解分式方程的一般步驟。

(1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

(2)解這個整式方程;

2、范例講解。

(學(xué)生嘗試練習(xí)后,教師講評)。

例1:解方程例2:解方程例3:解方程講評時強調(diào):

1、怎樣確定最簡公分母?(先將各分母因式分解)。

2、解分式方程的步驟、

鞏固練習(xí):p1471t,2t、

課堂小結(jié):解分式方程的一般步驟。

布置作業(yè):見作業(yè)本。

八年級數(shù)學(xué)教案全冊篇十六

本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式.提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納.教師的作用在于組織、點撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人.具體說明如下:

學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”.然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié).最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.

線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.

八年級數(shù)學(xué)教案全冊篇十七

1.了解方差的定義和計算公式。

2.理解方差概念的產(chǎn)生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

2.難點:理解方差公式。

問題農(nóng)科院計劃為某地選擇合適的甜玉米種子.選擇種子時,甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗田進(jìn)行試驗,得到各試驗田每公頃的產(chǎn)量(單位:t)如表所示。

根據(jù)這些數(shù)據(jù)估計,農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?

來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

意義:用來衡量一批數(shù)據(jù)的波動大小。

在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定。

(1)研究離散程度可用。

(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動大小。

(3)方差主要應(yīng)用在平均數(shù)相等或接近時。

(4)方差大波動大,方差小波動小,一般選波動小的。

例題:在一次芭蕾舞比賽中,甲乙兩個芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:

甲163164164165165166166167。

乙163165165166166167168168。

哪個芭蕾舞團(tuán)的女演員的身高比較整齊?

1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

甲:7、8、6、8、6、5、9、10、7、4。

乙:9、5、7、8、7、6、8、6、7、7。

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。

3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是()。

甲:0、1、0、2、2、0、3、1、2、4。

乙:2、3、1、2、0、2、1、1、2、1。

分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

八年級數(shù)學(xué)教案全冊篇十八

活動目標(biāo):

1、認(rèn)知目標(biāo):理解二等分的含義,學(xué)習(xí)二等分的方法。

2、操作目標(biāo):通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關(guān)系、等量關(guān)系。

3、能力目標(biāo):探索對不同圖形進(jìn)行二等分。

發(fā)散點:

運用不同的等分線對圖形進(jìn)行等分。

活動準(zhǔn)備:

正方形彩色紙片若干、多項操作學(xué)具、棋盤若干,記錄單,剪刀,鉛筆、手偶。

活動過程:

(一)等分圖形。

1、以情景引入。結(jié)合大班幼兒的年齡特點,創(chuàng)設(shè)了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學(xué),更加易于幼兒的理解。

(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?/p>

(2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”

(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”

(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”

(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的。”教師:“那我們就用正方形的紙來代替面包片幫平平姐姐來分成兩塊一樣大的!”

2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。

3、小結(jié):

(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”

(2)師:“有幾種分的方法”(對角和對邊折)。

(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。

(4)師:“怎樣分才能一樣大呢?”

(5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進(jìn)一步引導(dǎo)幼兒掌握二等分的關(guān)鍵要點。

(二)運用學(xué)具進(jìn)一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學(xué)具,抓住學(xué)具有洞洞點的特點,可以讓幼兒進(jìn)一步嘗試以各種折線為中心線進(jìn)行正方形的二等分,并且能夠保證精確性。促進(jìn)幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎(chǔ)上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。

1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”

2、請幼兒運用學(xué)具進(jìn)行嘗試,并準(zhǔn)確找到不同形狀的中心線,探索檢驗的方法。檢驗?zāi)軌蜃C明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學(xué)具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進(jìn)行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。

3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進(jìn)行指導(dǎo),并引導(dǎo)幼兒記錄、檢驗。

4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進(jìn)行了等分,你是怎樣指導(dǎo)它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結(jié)合大班幼兒集體學(xué)習(xí)的特點,鼓勵幼兒創(chuàng)新。

八年級數(shù)學(xué)教案全冊篇十九

《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容??v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

(一)知識目標(biāo):

1、要求學(xué)生掌握正方形的概念及性質(zhì);

2、能正確運用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;

(二)能力目標(biāo):

1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;

2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;

(三)情感目標(biāo):

1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實際的良好學(xué)風(fēng);

2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊精神;

3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

該段學(xué)生具有一定的獨立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。

通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。

第一環(huán)節(jié):相關(guān)知識回顧。

以提問的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;

定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實質(zhì)是來源于生活并要服務(wù)于生活。

5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達(dá)到理想中的完美。

6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。

【本文地址:http://www.mlvmservice.com/zuowen/10019924.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔